

Igus Motion Editor

Layout & configuration

Preliminary documentation for the control for robolink[®] articulated arms for use with the igus IME Software (igus[®] motion editor)

Revision 01, Version 10.2013 Prepared by B.Eng. Felix Berger fberger@igus.de +49 - (0)2203 - 9649 - 7331

> igus GmbH Spicher Strasse 1a, 51147 Cologne, Germany Tel: +49-(0)2203 / 9649-7331 eMail: FBerger@igus.de

1a) Hardware parts list

Quantity	Part	Source	Order no.	Comment
1	robolink articulated arm	igus		
1-6	Nanotec SMCI47-S-2	Nanotec		RS485 Bus
1	RS485 Converter cable	Nanotec	ZK-RS485-USB	
1	Crumb2560 V1.1 AVR	Chip45	crumb2560-1.1	16.000 MHz +
	ATmega module			headers
1	ATAVRISP-mkll	Chip45	avrisp2	
	programmable adapter			
1	5V Power supply			
1	48V Power supply			approx. 5A per
				control
1	RS485 connector	Conrad	740389 – 05	
1	RS485 socket	Conrad	740631 – 05	
1	USB Cable A -> Mini B	Conrad	975416 – 05	
1m	Ribbon Cable	Conrad	601922 – 05	
1-6 + 1	D-Sub Ribbon cable	Conrad	711357 – 05	
	connector			
2	D-Sub Ribbon cable	Conrad	711373 – 05	
	socket			
2	D-Sub Solder cup	Conrad	742066 – 05	
	connector			
1	D-Sub Solder cup socket	Conrad	742082 – 05	
4	120 Ω Resistor	Conrad	418145 – 05	
0.5m	5 x 0.34 mm ² cable	igus	CF130.03.05.UL	
1	Optical coupler	Conrad	505454 - 05	
1-6	Motor cable	igus	CF.INI-P5-M12-	
			BW-3	

1b) Software parts list

Programme	Current version	Source
IgusMotionEditor	v 2397	www.igus.de/robolink/software
CP210x VCP Driver	6.6.1	www.silabs.com
NanoPro	1.70.0.1	www.nanotec.de
Java-Programm NanoJEasy		www.igus.de/robolink/software

$\text{robolink}^{\mathbb{R}}$

Igus Motion Editor

Layout & configuration

2a) Hardware configuration - Crumb2560

- 1. Bridge contacts (4x)
- 2. Quartz (16.000MHz)
- 3. RS485 connector (Conrad 740389-05)
- 4. Headers (6x2)
- 5. Headers (24x2 or shorter) (only the highlighted sections are used)
- 6. Headers (24x2 or shorter) (only the highlighted sections are used)

2b) Fully assembled circuit board

plastics for longer life®

3a) Install boot loader

- 1. Connect AVR programming adapter to USB (PC/Laptop)
- 2. Use driver from the IgusMotionEditor directory (.../contrib/libusb) Restart the PC and press F8 during the boot process when driver signature problems occur. Then deactivate the driver signature. The deactivation is effective until the next restart.
- 3. Connect the programming adapter to 2x6 header (red side toward USB-Port)
- 4. Supply Crumb2560 with 5V DC

- 5. Execute Flashtool.exe in the IME directory
- 6. Configure as shown in the picture and flash boot loader

E FlashTool	
Programmer port	usb (e.g. AVRISP mkII) 🔹
Microcontroller port	· · · · · · · · · · · · · · · · · · ·
Hint: Unplug & replug devices to find	out COM port numbers!
Programmer type	avrispmkII 🔹
1) Flash bootloader	2) Flash firmware
Only required once. Needs an AVR programmer.	Does not need a programmer. Just connect the microcontroller and power it (robot may be connected).

7. The microcontroller must blink constantly after a successful flash process

3b) Flash firmware

- 1. Restart PC to reactivate driver signature
- 2. Connect Crumb2560 with PC/Laptop with USB cable
- 3. Install CP210x VCP driver
- 4. Execute Flashtool.exe in the IME directory
- 5. Configure as shown in the picture and flash firmware

] FlashTool	
Programmer port	COM7 👻
Microcontroller port	COM7 👻
Hint: Unplug & replug devices to find	out COM port numbers!
Programmer type	avrispmkII 🔹
1) Flash bootloader	2) Flash firmware
Only required once. Needs an AVR	Does not need a programmer. Just connect the microcontroller and power it

6. Following a successful flash process, the microcontroller should blink briefly after power up

The Crumb2560 microcontroller is now ready for use with the IgusMotionEditor!

$\mathsf{robolink}^{\mathbb{R}}$

Igus Motion Editor

Layout & configuration

4) Nanotec SMCI47-S NanoPro configuration

1. Set motor address to "1" as shown

- 2. Using a RS485 converter cable, connect the control with PC/laptop
- 3. Supply control with 48V DC
- 4. Install and start NanoPro
- 5. Always deny the message "Read configuration from control"!
- 6. Select the COM interface of the RS485 converter under the "Communication" tab
- 7. Update firmware: System \rightarrow Change Firmware \rightarrow Select Firmware \rightarrow RS485 / 04-02-2011
- 8. Verify successful update

- 9. Reset the control to the default condition under the "Mode" tab
- 10. Restart control
- 11. Motor \rightarrow delete motor
- 12. Motor \rightarrow Add Motor \rightarrow Address "1" (this step is necessary to reset all changed software settings)
- 13. Status display tab \rightarrow activate autostart \rightarrow save data \rightarrow write configuration to control (briefly switch to mode tab if the autostart function is missing)
- 14. Close programme, turn off control, and repeat steps 1-14 for additional controls

5) Prepare bus cable

Note: The bus cable shown here is a fast and cost-effective alternative to professional bus cables. We assume no guarantee for malfunctions and transmission errors!

1. Harness the bus cable as shown. Pin 1 connector/plug always on the red core! 1-6x SMCI47-S connector/s – depending on number of axis

2. Remove pin 3 on all connectors with a needlenose plier. 5V line is not needed and can cause malfunctions.

Igus Motion Editor

plastics for longer life®

3. Prepare terminating resistors: 120Ω resistor between pin 2+7 and 4+9 Use D-Sub connector with solder cup (Conrad 742066-05).

4. Interface cable Crumb2560 (igus CF130.03.05.UL) Use D-Sub plug with solder cup (Conrad 742082-05).

Pin D-Sub	Pin Crumb2560
2	3
4	3
7	2
8	1
9	2

6a) Nanotec SMCI47-S-2 device connection

Motor addresses 1-6 must be assigned before connecting all cables and the bus cable.

Input 1	- NC -
Input 2	- NC -
Input 3	- NC -
Input 4	- NC -
Input 5	- NC -
Input 6	- NC -
Signal GND	GND
Output 1	- NC -
Output 2	- NC -
Output 3	- NC -
Analogue In	Robolink Hall-Sensor
GND	GND
Brake	- NC -
GND	- NC -
+5 V	Robolink +5V
Channel B	Robolink Channel B
Channel A	Robolink Channel A
Index	Robolink Index
GND	Robolink GND
Winding A	Motor A - white
Winding A\	Motor A\ - brown
Winding B\	Motor B\ - black
Winding B	Motor B - blue
UB 24-48 V	+48V
GND	GND

6b) Device connection Crumb2560

The Crumb2560 controller output is max. 20mA / 5V. We recommend using an optical coupler.

7) Configure Igus Motion Editor

1. Calibration file

Example settings for a 2-axis RL-50-001 joint

[Joint0]	
name=Pivoting	# Displayed Name
type=X	<pre># Joint type (X = Pivoting / Z = Rotation)</pre>
address=1	# Motor controller address
lower_limit=-1.5708	# Lower joint angle limit in radians
	(Pi/180*angle)
upper_limit=1.5708	# Upper joint angle limit in radians
	(Pi/180*angle)
offset=0.0	# Joint offset in radians (Pi/180*angle)
invert=0	# Invert the axis (0 or 1)
encoder_steps_per_turn=6400	# 360/1,8*X*i (X = 1 full-step / 2 half-step)
	(i = gear reduction)
motor_steps_per_turn=6400	# 360/1,8*X*i (X = 1 full-step / 2 half-step)
	(i = gear reduction)
max_current=30	# Current moving
hold_current=20	# Current stop
length=0.10	# Displayed length
joystick_axis=0	# Joystick axis
joystick_invert=0	# Invert joystick axis
f. · · · • 1	
	# Displayed Name
type=2	# Joint type (X = Pivoting / Z = Rotation)
address=2	# Motor controller address
lower_limit=-6.2832	# Lower joint angle limit in radians
	(Pi/180*angle)
upper_limit=6.2832	# Upper joint angle limit in radians
	(Pi/180*angle)
offset=0.0	# Joint offset in radians (Pi/180*angle)
invert=0	# Invert the axis (0 or 1)
encoder_steps_per_turn=6400	# 360/1,8*X*i (X = 1 full-step / 2 half-step)
	(i = gear reduction)
motor_steps_per_turn=6400	# 360/1,8*X*i (X = 1 full-step / 2 half-step)
	(i = gear reduction)
max_current=30	# Current moving
hold_current=20	# Current stop
length=0.10	# Displayed length
joystick axis=0	
,, _	# Joystick axis

2. Java programme NanoJEasy

Example settings for a 2-axis RL-50-001 joint

3	- cl	ass NanoJMotorControl {		
4	// for 35:1: 2, for 16:1 with old encoder settings: 0, for 16:1 with correct values: 1			
5	final static int ENCODER_SHIFT = 1;			
6		final static int POSITION_BIAS = 16384; // has to match in µC code		
7				
8		// function to initialize the controller		
9	-	<pre>static void initializeController() {</pre>		
10				
11		<pre>// pause register is used to communicate a state with the PC</pre>		
12		// O controller just started		
13		<pre>// 1 controller searching for middle position</pre>		
14		// 2 normal mode		
15		// 3 compliance mode		
16		// other, halt the motor		
17		drive.SetPause(0);		
18				
19	-	if (config.GetMotorAddress() = 1) {		
20		<pre>config.SetRotencInc(310); // Encoder-resolution / gear-reduction (4960 / 16)</pre>		
21		config.SetEncoderDirection(0);		
22		util.SetStepMode(2);		
23		3		
24				
25	-	if (config.GetMotorAddress() = 2) {		
26		config.SetRotencInc(290);		
27		<pre>config.SetEncoderDirection(1);</pre>		
28		util.SetStepMode(2);		
29		3		
30				

- final static int ENCODER_SHIFT: Gearbox 16 = 1; Gearbox 35 = 2
- config.GetMotorAddress: Hardware address of the control
- config.SetRotencIng: Encoder resolution / Reduction gearing Encoder resolution RL-50 Pivot: 4960

RL-50 Rotation: 4640 RL-90 Pivot: 9920

- RL-90 Rotation: 9920
- config.SetEncoderDirection: Invert encoder rotating direction
- Use "1" when the arm slowly moves toward the dead stop during initialization
- util.SetStepMode: Use "2" RL-90-BL1 Rotation NEMA34 Motor: "32"
- drive.SetCurrent: Use low motor power setting to begin
 - NEMA17: Max 23% 1.8A
 - NEMA23: Max 56% 4.2A
 - NEMA34: Max 85% 6.4A

- 3. Load Java parameters into the control
 - COM port / baud rate (115200) / Enter motor address
 - Compile programme
 - Transfer programme
 - Repeat for controls 1-6
 - The Java programme was successfully loaded when the red LED on the control lights up steadily